Universality Limits for Random Matrices and de Branges Spaces of Entire Functions

نویسندگان

  • D. S. Lubinsky
  • Eli Levin
چکیده

We prove that de Branges spaces of entire functions describe universality limits in the bulk for random matrices, in the unitary case. In particular, under mild conditions on a measure with compact support, we show that each possible universality limit is the reproducing kernel of a de Branges space of entire functions that equals a classical Paley-Wiener space. We also show that any such reproducing kernel, suitably dilated, may arise as a universality limit for sequences of measures on [−1, 1].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Operator Associated with De Branges Spaces and Universality Limits

Under suitable conditions on a measure, universality limits f ( ; ) that arise in the bulk, unitary case, are reproducing kernels of de Branges spaces of entire functions. In the classical case, f is the sinc kernel f (s; t) = sin (s t) (s t) ; but other kernels can arise. We study the linear operator L [h] (x) = Z 1 1 f (s; x)h (s) ds; establishing inequalities, and deducing some conditions fo...

متن کامل

Entries of Indefinite Nevanlinna Matrices

In the early 1950’s, M. G. Krein characterized the entire functions that are an entry of some Nevanlinna matrix, and the pairs of entire functions that are a row of some Nevanlinna matrix. In connection with Pontryagin space versions of Krein’s theory of entire operators and de Branges’ theory of Hilbert spaces of entire functions, an indefinite analog of the Nevanlinna matrices plays a role. I...

متن کامل

A Note on Some Positivity Conditions Related to Zeta and L-functions

The theory of Hilbert spaces of entire functions [1] was developed by Louis de Branges in the late 1950s and early 1960s with the help of his students including James Rovnyak and David Trutt. It is a generalization of the part of Fourier analysis involving Fourier transform and Plancherel formula. The de Branges-Rovnyak theory of square summable power series, which played an important role in l...

متن کامل

Boundary behavior of functions in the de Branges–Rovnyak spaces

Abstract. This paper deals with the boundary behavior of functions in the de Branges– Rovnyak spaces. First, we give a criterion for the existence of radial limits for the derivatives of functions in the de Branges–Rovnyak spaces. This criterion generalizes a result of Ahern-Clark. Then we prove that the continuity of all functions in a de Branges– Rovnyak space on an open arc I of the boundary...

متن کامل

Majorization in de Branges spaces I. Representability of subspaces

In this series of papers we study subspaces of de Branges spaces of entire functions which are generated by majorization on subsets D of the closed upper half-plane. The present, first, part is addressed to the question which subspaces of a given de Branges space can be represented by means of majorization. Results depend on the set D where majorization is permitted. Significantly different sit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009